A design process of musical interface “PocoPoco”: An interactive artwork case study

Abstract
We developed original solenoid actuator units with several built-in sensors, and produced a box-shaped musical interface named “PocoPoco”, using 16 units of them as a universal input / output. From the beginning to the time when a professional artist used it for live performance, we were confronted with many problems and had to solve them. In this paper we present a design process of PocoPoco, explaining actual problems and solutions. Then we discuss the process to design a artistic and practical interface.

Keywords: Musical interface; Tangible user interface; Shape-changing interface.

1 INTRODUCTION
In this paper, we describe a design process of PocoPoco, an interface we researched and developed. It was developed as an interface to provide dynamic affordance with movable parts. Through various processes, now it is being used in a live performance of a professional artist.

The authors have conducted a study that focused on the tactile-visual interaction design. At the beginning this research started as an investigation of possibility of kinetic interface. We experienced various trial and error to implement this interface. At the same time we received so much feedbacks thorough demonstrations and live performances. Hardware and software configurations and mechanisms for input and output processing of PocoPoco are described in detail in [3]. On the other hand, improvements in collaboration with a professional musician were made since [3] have been reported. And in [3], artistic issues such as a history of ideas that led to the creation of this interface, consideration about what kind of musical performance can be enabled by this interface, and what kind of musical performances were played actually were not reported. In this paper, we report performances by a professional artist and ourselves, and describe the design process from idea to practical use.

1.1 Abstract of PocoPoco
PocoPoco is an interface that can provide dynamic tangible information using movement of its movable parts. It has original solenoid devices for output and several optical sensors for input. The original solenoid unit consists of a base-parts and movable-parts, and they can move up and down by control from a build-in computer.

The units have built-in tactile switches to detect user’s push and built-in optical sensors to detect each unit’s height and rotations. Then this system can detect user’s “pushing”,
“catching” and “turning” actions.
At the same time, there are two full color LEDs in each unit. The computer controls the switching and the color of light.
This device has one set of MIDI IN / MIDI OUT terminal. It sends MIDI note messages to the outside sound source. At the same time other MIDI devices can control PocoPoco via MIDI control change messages.

Users can (1) edit sound loops, (2) play notes like keyboards and (3) manipulate sound effects by intuitive actions such as “pushing”, “catching” and “turning” with PocoPoco.

1.2 Background
Today, there are various types of displays as interfaces that transmit information in the computers to a user. The development of displays is not limited to the improvement of the resolution, various products have been realized such as touch displays, 3D displays and flexible displays. The background of this seems to be that we are needed to manage more and more complex information with computers, so their interfaces are needed to be user friendly. Displays that can change GUI dynamically can work as an IO interface for various contents. But the information users receive is still limited to visual and audio. On the other hand, there are some reports about shape-changing interface.

Physical movement of real object provides impression to audience that could not be expressed by pictures. G Michelitsch et al. developed Haptic Chameleon[4] and they tried to control affordance that an interface provides to users dynamically. Physical movement of interface can provide dynamic affordance to a user.

In the field of art, movable works represented by kinetic sculpture have attracted audience for a long time. Early experiments with movement in art began in the 1910s, led by artists of the Dadaist and Constructivist traditions represented by Marcel Duchamp. In 1920, Constructivist artists Naum Gabo and Antoine Pevsner used the term “kinetic art” in their Realistic Manifesto. Most of kinetic art works early in the twenty century were put into action by the force of wind or water. On the other hand, in these days modern art works controlled by computer systems are increasingly being published. For example “MorphoTower” by Sachiko Kodama[5], a magnetic fluid composed of micro magnetic particles carried in a water or oil based fluid are controlled by dynamic magnetic fields manipulated by a computer. On the other hand Parkes, et al. argued about kinetic interaction, as they called “Kinetic Organic Interface”[6]. They mentioned its specification and possibility for Human Computer Interaction.

Physical movement of an object may express information that visual and audio approach can’t express. And kinetic interface itself can be art. From such a background we proposed attempts intended to integrate physical information such as movement and tactile information, with image expression, such as displays that integrate magnets or feathers with displays[1][2]. At the same time we started a research of an interface that uses physical movement of itself as a media to transmit information.

1.3 Abstract of a design process of PocoPoco
Here we show our PocoPoco’s development process at figure 1.

2 RELATED WORKS
Here we introduce related works we studied for PocoPoco’s development.

2.1 Shape changing displays
In the field of shape changing displays, various structures for kinetic movement are being proposed.

Hoggan et al. [7] showed that input on a touch screen can be improved by adding haptic feedback for typing tasks.

Iwata et al. made FELEX[8], a kinetic display consisting of movable pin actuators using DC motors and Piston-crank mechanism. Relief[9] by Leithinger et al. and Recompose[10] by Blackshaw et al. are also kinetic displays using DC motors and faders. A kinetic display with a DC motor has speed and power, but it is noisy.

On the other hand kinetic displays powered by a shape memory alloy can move quietly. Poupyrev et al. proposed RGBH display, where RGB is a color components and H is a height of a pixel. Lumen [11], is an implementation of such RGBH display. This box shape black display has a matrix of LEDs and thin shape memory alloy (SMA) wires built-in. 13 by 13 pixel bitmap can express 2D image by LEDs and each pixel can also physically move up and down by SMA wires. It allows users to feel shapes of virtual images through touch. PopUp! [12] by Nakatani et al. are kinetic displays using a shape memory alloy too. A shape memory alloy can move very quietly, but on the other hand, it’s not so powerful. And it takes relatively long time to transform, so it is not convenient to materialize rhythmic movements.

2.2 Tabletop type musical interfaces
In the field of interaction design, various types of tabletop interfaces have been developed and proposed. PocoPoco is one of the tabletop interfaces for musical expression.

Iwai et al. published “musical chess”[13], one of the tabletop device inspired by chessboard. In this work users can play music by arranging balls on the board.

“Notes on Small Fish” [14] is a tabletop device developed to support musical education.

In this work multiple users play music on the round table at the same time. This seems to be good example of tabletop device that used an advantage of tabletop device.

Pompeu Fabra University Music Technology Group developed Reactable [15]. This system captures objects on a table and generates electronic music. Sequence music is played corresponding to moving and turning objects. Compared to other musical interfaces to play live electronic music, because Reactable has tangible object as a music controller, it is easier to understand for audience how the player is controlling the music. Being used many professional artists for live
performances this interface proved tangible musical interface is attractive for musicians and audience. And the developer team is commercializing reactable.

2.3 Sequencer type musical interfaces
This interface is kind of a music sequencer type electric instrument. Music sequencer is one of a device that plays various rhythms automatically. Some step sequencers, such as Roland MC-808 [16], can arrange rhythm patterns dynamically, and are being used by many artists for live performance.

Tenori-on [17], a Product of Yamaha, is an instrument that enables users to play music visually. With this instrument users can play music like drawing. As a salient characteristic of this instrument, Tenori-on has reversible displays, at the front and the rear. This means one display is for a player and another is for audience. Here the interface for musical expression seems to be regarded not only for players, but also audience. Its intuitive and visual-based interaction so was attractive that actually it seems to have provided many people who are not get used to manipulate rhythm sequencers an opportunity begin to use this type of machines.

We were inspired by Tenori-on’s interaction design and playing method as a musical interface. On the other hand PocoPoco is kinetic interface and its physical affordance can provide information that cannot be expressed by visual and audio approaches. We applied physical interactions like “catching object” and “turning object” to musical performance, to differentiate our device from others.

3 PRE IMPLEMENTATION

Before starting the production of PocoPoco, we have made the production of two proactive works. “Emerging Keys” became basis of PocoPoco I/O system. “muve” showed a possibility of visualization of sound by up-and-down movements of solenoid units.

3.1 Emerging Keys
Emerging keys is a device that changes their interface in accordance with the purpose of use [18]. For the purpose of typing, they transfer to a keyboard, for the purpose of game, they float and user can use it as a controller.

3.2 Muve
Muve is a tangible music visualizer with seven original solenoid units [19]. It decomposes audio data to seven frequency ranges using Fast Fourier transform. And seven solenoid units move up-and-down corresponding to the sound level of each frequency level.

4 PROTOTYPE IMPLEMENTATION

In this chapter, we describe a development process and two applications we made in the first phase.

4.1 Conception
When we investigated previous studies of haptic interfaces, we discovered that most of games or electronic musical instruments are hard for users to control without visual information. Study of interfaces that can be used without visual information would lead to a development of universal interfaces useful for visually impaired people.
In the case of Emerging keys, our previous work, our concept was making an interface that can change the shape of a controller dynamically. Then the role of solenoid units was just forming various shapes, so the movements of them were not being focused seriously. Emerging keys was designed as a device that outputs image and sound. Accordingly, it had a display and a set of speakers.

We turned attention to movement of solenoid units itself and started considering a new interface that can provide visual and haptic effect for interactive system. The interface provides advanced interactions by integration of input parts and output parts. To present the tactile sensations of all solenoid units, the device was considered to be large enough to fit both hands of the user. Then we changed the number of solenoid units, from vertical and horizontal 6×10 of Emerging keys to 4×4, and designed the size of device vertical and horizontal 205 × 205mm, it is suitable to feel all of the solenoid units’ movements when a user covers the device with both hands.

4.2 Hardware

The prototype was designed as shape changing display, to be used for a multiplicity of uses such as a communication tool, game and musical instrument.

Original cylindrical units (Figure 2) that can move up-and-down by solenoid actuators, named “Poco”, are mapped into a 4×4 matrix. A tactile switch is embedded in each of the unit. So this unit can work as button input device. A micro controller board, Arduino Mega, processes all the input-output control system.

In addition, we installed two speakers and a sound generation module, to realize sound output. And we installed one USB terminal to communicate with the outside computers. The casing consists of plywood.

4.3 PocOthello

PocOthello is a game application of PocoPoco whose motif is famous board game “Othello”. PocOthello uses concavo-convex shape of Solenoid units to tell the condition of pieces meanwhile ordinary Othello uses black and white color of the surface (Figure 3). When user pushes Solenoid units, PocOthello builds the concavo-convex shape by computerized control in each case and PocOthello expresses a passage of pieces by the motion of Solenoid units. The feature of this application is that users can recognize the condition of the game haptically by putting their hand on the device. Therefore, even visually impaired people who cannot play ordinary Othello can play this game. At the same time dynamic movements of the device is impressive as a visual expression.

4.4 Poco Sequencer

Poco sequencer is an application developed to use PocoPoco as a musical interface. Using this application, users can make loop music easily. Through the survey of sequencer type musical interfaces, we found most of them are making music by playing some musical phrases every bar or multiple bars. As seen in most of rhythm machines and music sequencers like Tenori-on, time progress in the sequence is expressed by a shift of timeline from left to right.

This system seems to be attributed by the fact that in general musical score time progress is expressed by a shift of timeline from left to right. In the case of Tenori-on, the device has 16×16 IO units and each row means one bar of a musical instrument. In the case of PocoPoco, to express sequence by 4×4 units, we applied a method to shift left top to right bottom, 16 units expresses one bar of a rhythm sequence (Figure 4). In the general musical score, time progress is expressed by a shift of timeline from one row to lower row, so this method seems to be easy to understand.

When a user pushes the top of a cylinder, its switch is flipped to the “on” position causing the cylinder to rise and a sound to play at regular intervals. When a Poco turned on is pushed down, its switch is moved to the “off” position and movements and the sound stops. Each Poco means a sixteenth notes, users can make loop phrase by selecting and pushing them freely. These tones are arranged so that a pleasant harmony results no matter which combination of notes is used.

Layers

PocoPoco has relatively few IO units and it can’t express loops for multiple instruments at the same time. So we applied layers. Poco sequencer manages multiple layers in the program. Each layer keeps the sequence of one instrument. So users can pile up different musical phrases by changing layers. And each layer has a characteristic sound tone. Users can...
change layers by pushing specific 4 units at the same time.

4.5 Exhibitions and feedbacks
After the prototype implementation, we presented PocoPoco to some domestic study groups and displayed to some exhibitions.

The automatic movements of cylindrical units seemed to attract audience, from children to researchers.
Poco sequencer was praised in particular. The rhythmical movements of units seemed to attract audience. Thus we decided to concentrate to developing a musical interface using this device.

5 IMPROVEMENT FOR MUSICAL PERFORMANCE
In this section, we describe about the phase when we improved PocoPoco as an interface suitable for musical performance from the prototype. Below we detail changes in hardware and software, and feedbacks from the audience of exhibitions and music performances. In the prototyping phase, the shape changing display formed by solenoid actuators seemed to have some potential. Especially, Poco Sequencer, a musical application we made got positive feedbacks in some demonstrations and presentations. Therefore we decided to optimize PocoPoco as an interface for music performance. Then we improved design, hardware, and software.

5.1 Design goal
Poupyrev and et al. [20] mentioned design issues for musical controller for good design of musical interface on workshops, in CHI2001. Considering those issues, to apply this shape-changing interface to musical expression, we set following design goals:

Easy to play
Even children and musical beginners can play it in a short time. Without any special practices, users can enjoy playing it in a day. To realize it, we designed a simple and easy playing method as much as possible, for example users can play sequence music just by pushing each units and change sound tone by pushing four units at the same time.

Intuitive interactions
We aim to design intuitive interactions by mapping natural gestures to suitable musical elements, like “catching a moving object” “turning a knob”.

By unit’s movements and light expression, users should receive some suitable affordance. Movements of the units are well designed to present affordance to users, so as users can understand the playing method without any explanations.

Fine growth curve
According to the survey by Magnusson and Mendieta [21], though the longer people had played an acoustic instrument, the more they stressed the importance of embodiment in their musical practice, playing digital instruments seems to be less of an embodied practice. By introducing analog operations like "catching" and “turning”, we aimed at the design of the instrument to achieve precise operability, which has a good growth curve.

Aesthetically pleasing
Sophisticated instruments have sophisticated outward appearances. To motivate users to play music and to fascinate audience, we aim to design an aesthetically pleasing interface. Though in the case of the prototype we used plywood for the casing, since this improvement we have used the casing consists from ABS resin. We designed 3D models and made them using a 3D printer. We coated the base with surfacer, after that painted it. An ABS resin 3D printer that is currently popular has 0.25mm pitch. Because of surface bumps and light reflection, to make an aesthetic interface, we could not use the ABS resin directly. To make aesthetic interface using the 3D printer, we took below steps.

1. Filing by hands
2. Coating with surfacer (3 times)
3. Coating with paint
4. Filing by hands

After such steps, we implemented the black and white colored interface like an acoustic piano.

5.3 Implementation of MIDI system
Though the prototype could work rhythmically by measuring internal execution time, it did not have any communication functions and could not synchronize with other devices. On the other hand, depending on the small built-in sound module was limiting the variation of the sound tone. When we assume the use for full-fledged musical performance, it seems more reasonable that PocoPoco sends just trigger messages and an external application synthesizes sound. This method may be more flexible and expandable. Then we took away built-in speakers and a sound module, and installed MIDI IN / MIDI OUT terminals, then added MIDI communication functions. By using general MIDI communication, users can use any
sound generators, workstations and speakers with PocoPoco, easily.

MIDI OUT
PocoPoco sends MIDI note messages from MIDI OUT, to play sound in the sound source. MIDI messages are sent to DAW (Digital Audio Workstation) software, Logic Pro in the computer, through a MIDI interface. Logic Pro play sounds, corresponding to the MIDI note messages.

MIDI IN
PocoPoco can be controlled by MIDI messages sent to MIDI IN. START, STOP, RESTART of sequence is controlled by general MIDI control messages. Users can send the control messages using DAW or MIDI controllers.
And users can control PocoPoco’s rhythm by sending MIDI clock messages.

Users can synchronize multiple devices by sending same MIDI clock message to them.

We are using MAX / MSP application to synchronize 3 devices for 3 performers’ ensemble.

5.3 Implementation of “catching” and “turning” functions
We witnessed many user tried to catch the popping units, or rotate or press cylindrical units. From the feedbacks we got by exhibitions of the prototype, some new ideas for more intuitive interactions occurred to us. Despite they didn’t receive any explanations about playing methods, but they tried “catching” or “turning” actions to the moving units, as if they were granted actions. Then we considered these actions were quite intuitive for users, and we redesigned interactions and tried to map these actions to musical manipulations. To realize it, we implemented additional sensing system using multiple optical sensors. We installed three photo-interrupters in each solenoid unit, to detect units’ rotation and up-and-down movements. To detect the height of movable parts, we fixed a photo-interrupter on the base parts (figure 5). This sensor tells the distance between base parts and the top of movable parts.

In addition, we installed two photo-interrupters to detect the rotation of the unit. The movable parts were rotatable around the axle of the unit. We made slits in the movable parts. Using these two photo-interrupters’ data, the program detects rotation like rotary encoder (About these sensing system, please see [3] for details.).

Catching
PocoPoco’s up-and-down movements are often compared to a certain arcade game, Whac-A-Mole. A user who watched a rhythmically jumping or falling cylindrical unit, he or she can’t stop to gaze it and try to catch it. We likened this operation to catching sound, and mapped it to sound sustain. During a user is holding the unit above, the sound tone doesn’t attenuate.

Turning
Possibly because the cylindrical movable parts looks like some knob, many users try to turn the solenoid unit. Then we mapped the turning operation to the operation to control sound color. For example audio mixers and compact effectors for electric guitar, in general knobs are widely used to control sound color. Specifically, we mapped “turning” to volume and amount of modulation effect.

5.4 Implementation of full color LEDs
Through some demonstrations and live performances, the idea to install full color LEDs in solenoid units was occurred to us. The computer controls this full color light, so its color and timing can be corresponding to up-and-down movements. After this implementation, up-and-down movements with flash became more impressive and attractive for audience. At the same time, by changing light color corresponding to the editing layer, user can see the editing layer more clearly.

5.4 Implementation of Real-time mode
Through demonstrations in study groups and exhibitions, we found that most of musical beginners were supposing all the instruments generate sound after input gesture immediately.

In addition, PocoPoco’s sequence function is suitable to compose some rhythm sequences like a drum set, but it is not suitable to play a melody. Then we implemented “Real-time mode” additionally. In this mode a sound note is played once the unit is pushed immediately.

5.4 Designing original score
As mentioned previously, this interface is optimized to play sequence phrases, and the playing method is not similar to the one of acoustic instruments like piano and guitar.

During making performance systems, we found ordinary musical score is not suitable for PocoPoco’s play. So we designed original musical score (figure 6,7). In this score, the timeline moves left to right, and the units to be pushed is expressed visually.

Figure5  a set of improved solenoid unit
Left: Base parts, Right: Movable parts
Until now, we performed 8 musical performances and 11 demonstrations including ACM SIGGRAPH 2011 Emerging Technologies, and we estimate thousands of visitors played PocoPoco and watched our musical performances. Every time we get some feedbacks from visitors, we have been making many improvements to PocoPoco. Below we introduce some actual performances and feedbacks.

At the intercollege computer music concert 2010 on December 5, 2010, three of us performed the first ensemble concert. In this performance the synchronization of multiple PocoPoco with MIDI communication, the sound synthesis using external sound source, the Real-time mode to play the melodies, and an original score for the original composition were realized. From the fact that this performance has gained the support of audience and researchers, an ensemble format for three performers has been the basic form of our musical performances. Also, at that time we got the first idea of “catching” and “turning” operations, from the feedbacks of other researchers.

At the 89th IPSJ Special Interest Group on music and computer (SIGMUS) conference on February 11, 2011, we added one microphone to three PocoPoco, and we played songs including vocal performance. The vocal sound was processed like robot voice, and at that time one PocoPoco was working as a vocoder. The player could decide the vocoder’s pitch by pushing PocoPoco’s solenoid units, like real-time mode. This playing method was developed to expand PocoPoco’s playability, but from the feedbacks we found the interaction between actions and sound was not clear for audience, then we abandoned this method as a result.

In June 2012 we published a movie of 3 performers’ ensemble on the web. As of February 2013, this movie has been played more than 30 thousands times, and commented more than 35 times. Possibly this fact prove the potential of the musical performance with PocoPoco.

5.5 Performance and feedback

Until now, we performed 8 musical performances and 11 demonstrations including ACM SIGGRAPH 2011 Emerging Technologies, and we estimate thousands of visitors played PocoPoco and watched our musical performances. Every time we get some feedbacks from visitors, we have been making many improvements to PocoPoco. Below we introduce some actual performances and feedbacks.

At the intercollege computer music concert 2010 on December 5, 2010, three of us performed the first ensemble concert. In this performance the synchronization of multiple PocoPoco with MIDI communication, the sound synthesis using external sound source, the Real-time mode to play the melodies, and an original score for the original composition were realized. From the fact that this performance has gained the support of audience and researchers, an ensemble format for three performers has been the basic form of our musical performances. Also, at that time we got the first idea of “catching” and “turning” operations, from the feedbacks of other researchers.

At the 89th IPSJ Special Interest Group on music and computer (SIGMUS) conference on February 11, 2011, we added one microphone to three PocoPoco, and we played songs including vocal performance. The vocal sound was processed like robot voice, and at that time one PocoPoco was working as a vocoder. The player could decide the vocoder’s pitch by pushing PocoPoco’s solenoid units, like real-time mode. This playing method was developed to expand PocoPoco’s playability, but from the feedbacks we found the interaction between actions and sound was not clear for audience, then we abandoned this method as a result.

In June 2012 we published a movie of 3 performers’ ensemble on the web. As of February 2013, this movie has been played more than 30 thousands times, and commented more than 35 times. Possibly this fact prove the potential of the musical performance with PocoPoco.

6 COLLABORATION WITH A PROFESSIONAL ARTIST

In this capture we describe a development process of PocoPoco’s third implementation. In this phase we did a collaborative research with a professional artist Little boots, based in London. Through this collaboration, we improved PocoPoco to achieve her requests, and then this interface became more practically useful and attractive. We explain the process from the beginning of this collaboration to the live performance she used PocoPoco in public.

6.1 Little boots

Victoria Christina Hesketh, well known as Little boots, is electro pop singer songwriter born in U.K. She is a versatile player and she plays piano, keyboard, synthesizer, Tenori-on,
and etc. on the stage. She performed in Japan SUMMER SONIC 2009 at first. Including solo performance in Japan, she continues to perform actively at home and abroad.

She found our research through the Internet, and offered the collaboration with us. At that time PocoPoco had never been played on commercial music stages.

By complying request from a professional artist, we could improve the interface efficiently. Thus we decided to collaborate with her.

For this collaboration we had one meeting and exchanged emails about 150 times so far.

6.2 Process of the collaboration

This collaboration started from a meeting at Tokyo. As her artistic characteristic, she takes a lot of electronic instruments and synthesizers in musical performance. She says she demands for her musical interface to be as visual as possible for a live performance so the audience can see what is happening and understand how the sound is created. And she says if the audience can make a connection between what they are seeing and what they are hearing then that is the ultimate achievement for her for a live show. From this point of view, PocoPoco, an interface that physicalizes sound by object’s movements and light, seems to be suitable interface for her live show. Also, because she mainly plays dance music, she often plays on the dark stage and light of PocoPoco fits to the music. Through meetings and exchanges of e-mail, we reached one conclusion that the new PocoPoco she would use should be able to play two bars long phrases, to play a motif phrase of her representative song “Shake”. At the same time, the sequencer had to be controlled by an outside interface (For example other instrument players can stop and restart the sequence using a MIDI interface). To achieve this we had to develop a more advanced MIDI system.

In addition, for the audience, she hoped more impressive visualization of sound.

6.3 TEMPoco

PocoPoco’s 4x4 matrix units are suitable to express 16 beats phrases. On the other hand it is not good at expressing long bars phrases. To enable PocoPoco to play 2 bars phrases, we had to remedy a defect. Then we developed a new gadget named “TEMPoco”.

This device relays MIDI messages between the outside interfaces and PocoPoco.

It has 3 sets of MIDI I/O terminals. One is connected to the outside interface and others are connected to two PocoPoco (Figure 10, 11). TEMPoco receives MIDI clock messages from the outside, and sends one bar’s MIDI clock messages to one PocoPoco alternately. Each PocoPoco play one bar phrase one by one, then two of them can consist 2 bars loop phrases.

TEMPoco bypasses all MIDI note messages from two PocoPoco to the outside interface. In addition, control messages such as “stop”, “restart” and “reset” are sent from the outside interface and relayed to two PocoPoco at a time. A program in PocoPoco receives these control messages and controls its sequence. Using TEMPoco, we could enable PocoPoco to “play 2 bars long phrases” and make it “controllable from the outside”.

6.4 Visualization of the timeline

For more impressive interaction, we visualized sequence timeline by LEDs’ flash. The flash pointed the timing of 16 beats. In addition, we set up respective light color for each layer. When some unit’s switch is turned on, the unit continues to turn on the light. Using this system, users could compose rhythm sequence like drawing (figure 12).

6.5 Performance and feedback

May 4, 2012, at XOYO London, Little boots used PocoPoco for her public live performance at first. In this performance two PocoPoco were connected to TEMPoco, and could play her song “shake” without mishap.

After that we performed a questionnaire by e-mail to her about evaluation of PocoPoco as a musical interface. As good points, she mentioned

‘a music novice or beginner could easily play with PocoPoco and start making music and begin to understand the connection between what they are playing and how the sound is reacting.’

‘a trained musician like herself can use it and get to a very
In fact she says that she witnessed large audience was gazing on and fascinated by PocoPoco’s movements. On the other hand, she mentioned bad points below

- The main difficulty for her with PocoPoco is it is not stable enough to be moved around for live performance and touring travel.
- She had many problems with the solenoid units not reacting or getting stuck and having to open up the inside but repairing them was too hard for herself.

We consider that these problems are due to the fact that many of the current manufacturing steps of PocoPoco is dependent on the handwork. Changing the course of production, such as outsourcing some modules, may solve these problems. Even though it has a difficult point about stability, she is highly approving the potential of PocoPoco as a musical interface for full-fledged musical performances. This collaboration will continue and additional improvements will be implemented. PocoPoco will be more stable and practical to be used for various performances.

7 CONCLUSIONS
In this paper we described a design process of PocoPoco. Through various design processes such as planning, implementation and evaluation, PocoPoco made refined as a practical interface. Especially, collaboration with a professional artist seemed to be an efficient process to improve the interface. PocoPoco can provide advanced interactions by integration of input parts, such as a tactile switch and photo-interrupters, and output parts, such as a solenoid actuator and full color LEDs into a small unit. This unit is just a cylinder as long as it has stopped, but once it starts to move and flash, it can provide various impressions such as Whac-A-Mole or a knob. More precise control of these movement and light may create other impressions. We will keep studying affordance that an interface provides to a user, and pursuing intuitive interactions with that a user can control the interface without any explanations. While we abandoned some applications such as “pocOthello” in the design process, shape-changing interface has possibility to be used for various applications. We would like to continue designing new interfaces, referring to PocoPoco’s design process. PocoPoco is a so simple and intuitive interface that music novice or beginner could easily play with it. At the same time its physicalization of sound is valuable for full-fledged musical performances. But this interface is immature, for example about the stability or preciseness of control. We will keep refining them and pursuing artistic value, for example original sound or playing methods that only this interface can realize.

References


